Función exponencial
La función exponencial, es conocida formalmente como la función real ex, donde e es el número de Euler, aproximadamente 2.71828...; esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.En términos mucho más generales, una función real E(x) se dice que es deltipo exponencial en base a si tiene la forma
La función exponencial ex puede ser definida de diversas maneras equivalentes entre sí, como una serie infinita. En particular puede ser definida como una serie de potencias:
siendo a, K ∈ R números reales, con a > 0. Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base a que utilicen.
La función logarítmica en base a es la función inversa de la exponencial en base a.
x | |
---|---|
1/8 | -3 |
1/4 | -2 |
1/2 | -1 |
1 | 0 |
2 | 1 |
4 | 2 |
8 | 3 |
x | |
---|---|
1/8 | 3 |
1/4 | 2 |
1/2 | 1 |
1 | 0 |
2 | −1 |
4 | −2 |
8 | −3 |
No hay comentarios:
Publicar un comentario