domingo, 26 de mayo de 2013

FUNCIÓN EXPONENCIAL.... Y LOGARITMO


Función exponencial

La función exponencial, es conocida formalmente como la función real ex, donde e es el número de Euler, aproximadamente 2.71828...; esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.
En términos mucho más generales, una función real E(x) se dice que es deltipo exponencial en base a si tiene la forma
E(x)=K \cdot a^x
siendo aK ∈ R números reales, con a > 0. Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base a que utilicen.
La función exponencial ex puede ser definida de diversas maneras equivalentes entre sí, como una serie infinita. En particular puede ser definida como una serie de potencias:
e^x = \sum_{n = 0}^{\infty} {x^n \over n!} = 1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} + \ldots
La función logarítmica en base a es la función inversa de la exponencial en base a.
función
función
log
xlog
1/8-3
1/4-2
1/2-1
10
21
42
83
Logarithmic Function
log
xLogarithmic Functions
1/83
1/42
1/21
10
2−1
4−2
8−3
Logarithmic Function

No hay comentarios:

Publicar un comentario